

1

SDK logic node

Documentation

Last updated: 10.01.2020

2

Contents
1 About this documentation ... 3

1.1 Target group .. 3

2 Basics .. 3

2.1 Logic nodes .. 3

3 Using the examples .. 4

4 Signing logic nodes ... 4

4.1 Creating a certificate signing request .. 4

4.2 Importing the created certificate from Gira .. 8

4.3 Using the certificate to sign logic nodes .. 9

5 Description of the API ... 9

5.1 Foreword ... 9

5.2 Creating a new logic node class ... 9

5.3 API services .. 10

5.3.1 ITypeService ... 10

5.3.1a The type system.. 12

5.3.1b Complete port definition .. 13

5.3.2 ISchedulerService ... 18

5.3.3 IPersistenceService ... 20

5.3.4 IEditorService.. 20

5.4 Functionality of the Programming node ... 21

5.4.1 Properties of IValueObject ... 22

5.5 Checking the logic nodes ... 23

5.6 Translation of the logic nodes ... 24

6 The Manifest.json file ... 25

6.1 Adjusting the coding .. 25

6.2 Sample Manifest.json file .. 26

6.3 Description of the entries in the Manifest.json file... 27

6.4 Licence model .. 28

6.4.1 Free ... 28

6.4.2 Device ... 28

6.5 Description of the HelpFileReference in the Manifest.json file ... 29

7 Hints and tips .. 30

Debugging / testing logic nodes .. 30

Versioning .. 30

Translation and help .. 30

Frequent misuse .. 31

3

1 About this documentation
This documentation introduces the developer to the Software Development Kit (SDK) logic

node, enabling them to develop logic nodes for the Logic Editor in the Gira Project Assistant

(GPA). An enclosed Visual Studio project, in which the logic nodes are programmed in C#, is

used for this purpose.

1.1 Target group
This documentation is aimed at people who already have the following knowledge:

- Developing in the programming language C#

- A basic understanding of the JSON format

- Using the Visual Studio 2017 development environment

- Using the Gira Project Assistant

o How data points work

o Using the Logic Editor

2 Basics

2.1 Logic nodes
Logic pages can be created using the Logic Editor in the Gira Project Assistant (GPA). These

logic pages are visual representations of logic circuits that are executed on the device (e.g.

Gira X1 or Gira L1) once the GPA project has been started up. Logic pages are made up of

logic nodes and the connections between them.

A logic node adopts values via one or more inputs, processes them according to its internal

programming and then outputs new calculated values at one or more outputs. The values at

the outputs are transferred to the inputs of another logic node via a connection, which is

represented on the logic page by a line between an input and an output. This enables creation

of even complex logic circuits. Up until now, the logic has only communicated with the rest of

the project via the Input and Output logic nodes, whose values are linked to random data

points. Other communication channels can be developed with the SDK.

The GPA already contains some logic nodes by default, such as the OR gate, the PID controller

or the comparator. The SDK logic node enables the developer to create their own logic nodes

and use them in logic pages. New logic nodes are very useful for special applications. This

SDK logic node already contains some examples, such as Aggregation. To name but one

example, this node can be used to calculate the mean value of the values present at the inputs.

For this application, it is very helpful to have your own logic node, because it is very time-

consuming to calculate the mean value by linking other logic nodes and because the newly

created logic node can be reused in many projects.

4

3 Using the examples
As part of the SDK logic node, a Visual Studio 2017 Solution is available in the Example and

Template folders. The Solution in the Example folder contains a sample project named

ExampleNodes, which implements several different nodes. The Template folder also contains

a prepared Solution named LogicNodes, which can be used as a template for new logic nodes.

There is also a unit test project for each of the two projects.

The unit tests use the NUnit framework, which is downloaded with the NuGet package

manager integrated in Visual Studio. The tests are run with Visual Studio’s Test Explorer. The

LogicNodesTest project only contains an empty test case that is available to the developer to

write their own tests for the logic node.

If the ExampleNodes project has been built successfully, the

LogicNodesSDK.Logic.Examples-1.0.0.zip file that contains the sample nodes is located in the

Solution’s Zip sub-folder. The logic nodes in the .zip file are not yet cryptographically signed.

This means that they can indeed be imported into the Gira Project Assistant (GPA) and tested

in the simulation, but unsigned logic nodes cannot be transferred to the executing Gira device.

The Add Logic Nodes button is used in the Logic Editor tile to install the nodes in the GPA.

A certificate must be applied for to begin with for signing purposes. The complete process is

described in section 4 Signing logic nodes below.

4 Signing logic nodes
Logic nodes are signed with the SignLogicNodes program contained in the SDK. This program

requires a PKCS#12 certificate issued by Gira. The developer must submit a certificate signing

request to receive a certificate.

4.1 Creating a certificate signing request
It is advisable to use the X Certificate and Key Management program to create the certificate

signing request. The program is available at https://hohnstaedt.de/xca/. It must be installed

and launched. The menu navigation is described in this document using the English language

setting.

When certificates or keys are created for the first time, a database must be created for the

program. Select the File -> New DataBase menu item to do so. Alternatively, an existing

database can be imported with File -> Open DataBase.

Each database is password-protected and can be used independently of the operating system.

This password is set when the database is created.

https://hohnstaedt.de/xca/

5

First of all, it must be ensured that the default hash algorithm is set to SHA 256 and that this

setting is made if necessary. This setting can be found under the File -> Options menu item.

A private key must be generated. To do this, use the New Key button on the Private Keys tab

and specify a random name for the key. RSA and 4096 bit must be selected in the Keytype

and Keysize drop-down menus.

6

A signing request is made with the private key. The Certificate signing requests tab must be

selected for this purpose. Click on the New Request button to open a new window. In this

window, the developer’s personal data must be entered on the Subject tab:

Internal Name The certificate signing request’s display name

countryName The location’s country code (e.g. DE for Germany)

localityName The location’s town / city name

organizationName Company name (left blank for private individuals)

commonName The applicant’s name

emailAddress The applicant’s e-mail address

If the certificate is to be issued for a private individual, the organizationName field must be left

blank.

The data entered here is intended for display in the GPA and on the device website, so users

can contact the publisher of these logic nodes directly if they have any problems.

Your personal data will be collected and processed based on the privacy policy attached to

this document.

7

A private key must be selected in the Private key drop-down menu; the key just created can

be selected here.

On the Key usage tab, Digital Signature and Non Repudiation must be selected by clicking on

them. With this information, the certificate signing request is complete and can be generated

by clicking on the OK button.

8

The Export button is used to export this certificate signing request. The PEM format must be

selected under Export Format. This .pem file must be sent to developer@gira.de by e-mail.

Your personal data will be collected and processed based on the privacy policy attached to

this document. Your certificate signing request will then be processed and you should receive

an answer from Gira containing your signed certificate after some time.

NOTE

Please never send your X Certificate database, your private key or one of your

passwords to Gira. Do not share these files or this information with anyone who is not

supposed to be able to publish logic nodes on your behalf.

4.2 Importing the created certificate from Gira
As soon as the certificate signing request has been processed, the requester receives a

certificate signed by Gira which is imported into the X Certificate and Key Management

program. To do this, a dialogue in which the certificate received must be selected is opened

on the Certificates tab with the Import PKCS#7 button. The user is asked in a window that

opens which of the certificate chain’s certificates are to be imported. Since all the certificates

have to be imported, the Import All button is selected here.

In this imported certificate chain, the certificate previously created and now signed by Gira

must be exported. The entire certificate chain is expanded on the Certificates tab and the

bottom-most certificate selected for this purpose. Click on the Export button to export the

certificate. In the file dialogue that opens, PKCS#12 chain (*.p12) must be selected as the file

format.

9

The certificate signed by Gira is valid for 10 years by default. However, the validity period of

the logic nodes’ certificates is not checked on the devices, so the logic nodes remain functional

even after the validity period has elapsed.

Once these 10 years have passed, a new certificate request can be submitted to be able to

sign new logic nodes with a current certificate.

4.3 Using the certificate to sign logic nodes
The logic nodes are signed using the SignLogicNodes program contained in the SDK.

The program must be called up from the command line interface with three parameters: the

path to a signed certificate, this certificate’s password and the path to the logic node .zip file to

be signed.

SignLogicNodes.exe <p12 Certificate> <Password> <Path to the logic node .zip file>

Alternatively, this step can also be entered in the project as a post-build event.

As described in section 3 Using the examples, the signed node is added to the GPA using the

Add Logic Nodes button. This means that the logic nodes can be used in the GPA and also

uploaded to a Gira X1 or a Gira L1 as a project component.

5 Description of the API

5.1 Foreword
The SDK logic node provides a programming interface, known as an ‘API’ for short, for

developing logic nodes. The use of this logic node API (hereinafter only referred to as the ‘API’)

ensures that the developed logic nodes are compatible with the GPA and the other logic nodes.

5.2 Creating a new logic node class
Each newly developed logic node is implemented as a class in C#.

using LogicModule.Nodes.Helpers;
using LogicModule.ObjectModel;

public class Node : ILogicNode
{
 public Node(INodeContext context)
 {
 ...
 }
 ...
}

The Node class inherits from the ILogicNode class, which exists in the

LogicModule.ObjectModel namespace. The constructor of the Node class must be

implemented in such a way that it is transferred a variable of the INodeContext type. The

INodeContext type also exists in the LogicModule.ObjectModel namespace.

10

ILogicNode is an interface class, so all methods of this class (Execute, Startup, Localize and

Validate) must be implemented in the Node class. More information about these methods can

be found in section 5.4. The LogicNodeBase class implements useful dummies for these

methods. So it makes sense, especially for beginners, for methods to inherit from the

LogicNodeBase node. It is located in the LogicModule.Nodes.Helpers namespace.

The context variable is the access point to the API. Via this interface, the node requests special

services to access the various functions such as data points, times or input and output

generation. The available services are described in section 5.3 below.

5.3 API services
The API provides services for the different functionalities. Instances of these services are

called up from the INodeContext object in the constructor. To do this, the line

‘ServiceName’ typeService = context.GetService<‘ServiceName’>();

must be called up. The ‘ServiceName’ placeholder is the type of the desired service. The

following services are available in the API.

5.3.1 ITypeService
The ITypeService provides methods to define the properties of the logic node’s ports. A port is

an input, an output or a parameter. Ports are represented by ValueObjects. The ITypeService

provides methods for generating specific ValueObjects instances. The section below lists the

methods used to generate different types of instances.

AnyValueObject CreateAny(
 string typeName, string name, object defaultValue = null);

BoolValueObject CreateBool(
 string typeName, string name, bool? defaultValue = null);

ByteValueObject CreateByte(
 string typeName, string name, byte? defaultValue = null, string unit = null);

IntValueObject CreateInt(
 string typeName, string name, int? defaultValue = null, string unit = null);

DoubleValueObject CreateDouble(
 string typeName, string name, double? defaultValue = null, string unit = null);

UIntValueObject CreateUInt(
 string typeName, string name, uint? defaultValue = null, string unit = null);

UShortValueObject CreateUShort(
 string typeName, string name, ushort? defaultValue = null, string unit = null);

TimeSpanValueObject CreateTimeSpan(
 string typeName, string name, TimeSpan? defaultValue = null, string unit = null);

DateTimeValueObject CreateDateTime(
 string typeName, string name, DateTime? defaultValue = null, string unit = null);

StringValueObject CreateString(
 string typeName, string name, string defaultValue = null);

11

These methods are structured according to a schema:

• The first parameter is the name of the type to be generated. It defines the port’s data

type. An example is ‘NUMBER’ to define a port that adopts or transfers a value of the

Number type.

• The second parameter is the name of the port or ValueObject. This is also displayed in

the GPA as a port name, unless it is overwritten by a translation into another language;

also see section 5.5. The port name must be unique within a logic node.

• The third parameter is always optional and is the initial value that the port has when

generating the node, i.e. when adding it to the logic page. However, before the logic is

started, the GPA user can change or even delete the port’s value. Ports whose values

are unavailable or have been deleted are read with the value null.

• The fourth parameter is only available for some methods and is always optional too. It

indicates in which physical unit the port’s numerical value is to be interpreted, e.g.

whether a length is given in metres, centimetres or feet. It is only used to inform the

node user and is displayed by the GPA as a port property.

The types exist in the LogicModule.ObjectModel.TypeSystem namespace.

In addition to the above functions, ITypeService also provides the CreateValueObject and

CreateEnum methods.

IValueObject CreateValueObject(
 string typeName, string name, object defaultValue = null);

EnumValueObject CreateEnum(
 string typeName, string name, string[] allowedValues, string defaultValue=null);

These methods are similar to the others in the list of generating functions. Most of their

parameters will be used as already described above. However, they still require a separate

explanation.

The CreateValueObject method generates an instance of the IValueObject type. The

IValueObject is an interface type and cannot be used directly; IValueObject must be converted

into one of the other ValueObject types by a cast. This enables replacement of all the other

functions from the list of functions to be generated. However, it is advisable to use the more

specific functions to save the cast.

The CreateEnum method defines a new ValueObject type. This type’s possible values are

strings from a list. The typeName parameter specifies the name of the new type so that further

instances of this enum type can be created later on. The possible values that the enum type

can adopt are transferred as an array of strings with allowedValues.

If another instance of a previously defined enum type is to be generated, CreateEnum offers

an overload.

EnumValueObject CreateEnum(
 string typeName, string name, string defaultValue = null);

Only the array with the possible values is missing here. The typeName parameter must be the

name of a previously defined enum type.

The ColorConverter sample logic node uses a parameter of the enum type to select the two

possible conversion directions.

12

The complete port definition is described in section 5.3.1b. The type system is described here

first of all.

5.3.1a The type system
The type system provides various data types for meaningful port typing. This prevents different

nodes’ ports whose connection makes no sense from being connected. For example,

connecting an output of the ‘STRING’ type to an input of the ‘NUMBER’ type does not make

sense. On the other hand, you should avoid having to implement a separate node for each

type to keep the number of nodes and the development costs low. It is therefore advisable to

select the type of ports as generally as possible, but as specifically as necessary.

An example of this is a logic node that adds the values of two or more inputs and outputs the

result at the output. For this application, it makes sense to select ‘NUMBER’ for the ports’

types. This ensures that the ports can be connected to ports of other nodes, e.g. of the Integer,

Float or Byte type. Another conceivable example is angle addition. A logic node such as this

adds the values at the inputs, applies a modulo 360 operation to the result and writes the result

to the output. For this node, it is very useful to assign the ‘DEGREE’ type to the ports. This

prevents the possibility of accidentally connecting ports to other ports that are incompatible

with the ‘DEGREE’ type.

All of the implemented types and their relationships to one another are displayed in the

illustration of the type system.

13

5.3.1b Complete port definition
A port is defined is in two steps. First of all, a property is created in the logic node’s class.

14

[Input(DisplayOrder = 1, IsRequired = true)]
public DoubleValueObject Input { get; private set; }

The property must be public, but the setter can be set to private. The developer is free to select

the property’s name. The property’s type must match the desired port type. In the example, a

DoubleValueObject is defined so that the ‘NUMBER’ port type can be selected in the second

step. The Input attribute indicates that an input is defined here. There are three attributes in

total for ports:

• Input for defining an input

• Output for defining an output

• Parameter for defining a parameter

At the input property example, you can see that parameters can be transferred to the attribute.

The following parameters are available.

Port parameter

DisplayOrder
DisplayOrder is available for all attributes (Input, Output, Parameter). The value of this

parameter influences the display order in the GPA. The smaller DisplayOrder’s value, the

further up the corresponding port is displayed in the visual representation in the GPA’s Logic

Editor. In the example below, Output1 is displayed before Output2.

[Output(DisplayOrder = 2)]
public IValueObject Output2 { get; set;}

[Output(DisplayOrder = 1)]
public IValueObject Output1 { get; set;}

The following should be noted:

• If DisplayOrder was not set, the order is undefined.

• DisplayOrder applies to the Output attribute separately from the other two attributes,

so outputs in the GPA are still always displayed to the right of the node, and inputs and

parameters are always displayed to the left.

• The value of DisplayOrder must be greater than or equal to 1; all other values are

interpreted as if the value was not set.

InitOrder
The InitOrder parameter is available for the Input and Parameter attributes. This influences the

order of initialisation. In the example below, the Datapoint parameter is initialised first, then the

Trigger input. If InitOrder is not set, the order is undefined.

[Input(InitOrder = 2)]
public AnyValueObject Trigger { get; set; }

[Parameter(InitOrder = 1)]
public DataPointValueObject Datapoint { get; private set; }

15

Here, it should again be noted that the lowest possible value is 1. All values less than 1 are

interpreted as not set.

AsTitle
This parameter is only available for the Parameter attribute. This is a flag, so only the values

true or false can be assigned. If this flag is set to true, this indicates that the parameter is

fundamentally important for the node. This flag can be set to true for a maximum of one

parameter per node. If a node such as this is added to the logic page, the GPA expects a value

for this parameter to be entered immediately. If the value is missing, the corresponding text

box is highlighted in yellow by the GPA. The value entered for this port is used as the node’s

title. This function is used in the ‘Input’ and ‘Output’ logic nodes to prompt the user to enter a

data point whose name is then displayed as the node’s title.

[Parameter(AsTitle = true)]
public DataPointValueObject Datapoint { get; private set; }

IsDefaultShown
All three attributes offer the IsDefaultShown parameter. This is also a flag. It determines

whether the port is displayed by default or hidden. In the case of a parameter, this determines

whether the value of the parameter is displayed on the node by default. The default setting for

this flag is true, so each port is displayed when the node is generated, unless the flag was

actively set to false.

[Input]
public IValueObject Input1 { get; private set; }

[Input(IsDefaultShown = true)]
public IValueObject Input2 { get; private set; }

[Input(IsDefaultShown = false)]
public IValueObject Input3 { get; private set; }

The two inputs Input1 and Input2 are displayed on the node by default in the GPA, whereas

Input3 is not displayed by default. Regardless of this flag, the GPA user can show or hide the

ports. This flag specifies only the default setting that the port has when the logic node is added

to the logic page.

IsRequired
The IsRequired parameter is also available for all three attributes, but has a slightly different

effect on the various attributes. This parameter is again a flag and can therefore only adopt the

values true or false; the default setting is false. If the flag’s value is set to true, the port can no

longer be hidden in the GPA for all three attributes. If IsDefaultShown = false is also specified,

this is overwritten with the IsRequired = true setting and the port is displayed by default. For

inputs, it is possible to switch between two states in the GPA’s Logic Editor. Either the input

receives its value from another node’s output, or the user must manually enter a fixed value.

For inputs with IsRequired = true, this switching option is omitted and the input must always

obtain its value from another node’s output.

[Input(IsRequired = true)]
public IValueObject Input { get; set; }

16

IsInput
This parameter is only available for the Input attribute, so only for inputs and also only for

situations where IsRequired = true was not set. This is again a flag with the default setting true.

It specifies how the input is displayed to the user, whether a fixed value must be entered by

default or whether the input must be connected to an output. This flag only affects the default

display when the node is added to the logic page. It is also possible for the user to configure

the node and switch between the two types of value assignment.

[Input]
public IValueObject Input1 { get; private set; }

[Input(IsInput = false)]
public IValueObject Input2 { get; private set; }

[Input(IsInput = true)]
public IValueObject Input3 { get; private set; }

The Input2 input is displayed in the GPA when the node is generated in such a way that the

user must enter a fixed value, whereas Input1 and Input3 are displayed in such a way that a

connection to an output must be established.

Instantiation
If all desired port parameters have been assigned values, the next step of port definition follows

in the node constructor. The properties of the ports must be instantiated by assigning them an

instance created by the ITypeService object. How this works is best illustrated by an example.

public class Node : LogicNodeBase
{
 ...
 [Input(DisplayOrder = 2, IsDefaultShown = false, IsInput = true)]
 public BoolValueObject Reset { get; private set; }
 ...

 public Node(INodeContext context)
 : base(context)
 {
 ...
 ITypeService typeService = context.GetService<ITypeService>();
 this.Reset = typeService.CreateBool(PortTypes.Binary, "Reset", false);
 ...
 }
}

In the constructor of the Node class, the Reset input is assigned the display name Reset and

the initial value false. The port type is also set to ‘BINARY’. All available port type names are

present in the static PortTypes class as constant string variables, so the developer has a guide

for the notation.

For some of the type system’s types, the instances have meta information such as a minimum

or maximum value. These are set and called up after instantiation. For ValueObjects of the

‘NUMBER’ type and the derived types, there is a minimum and maximum value that can be

specified if required.

17

this.Count = typeService.CreateInt(PortTypes.Integer, "Count", 1);
this.Count.MinValue = 1;
this.Count.MaxValue = 10;

The set minimum and maximum values are displayed by the GPA as port properties. A

maximum permissible length can be specified for StringValueObjects; this is set using the

MaxLength parameter.

this.InputStr = typeService.CreateString(PortTypes.String, "Input String", "42");
this.InputStr.MaxLength = 12;

This meta information is also displayed by the GPA as a port property. Some port types have

implicit minimum and maximum values. For example, the value of a ‘BYTE’-type port is always

between 0 and 255. It can be specified how the logic node behaves if a value that is outside

the permissible range is written to a port. There are two possible settings:

• Saturation: The value is automatically adjusted to fall within the valid value range. If,

for example, the value exceeds the set or implicit maximum value, it is replaced by the

maximum value which the port then adopts.

• Exception: The wrong value leads to an exception in the logic. This means that the port

does not adopt any value changes. Additionally, the error is recorded and the part of

the logic in which the node is located is stopped.

The default behaviour is that described under ‘Saturation’. This meta information is set by the

line

this.Count.OutOfRangeBehavior = OutOfRangeBehavior.Saturation;

List of ports
For many logic nodes, the number of inputs or outputs needs to be set dynamically while the

logic page is being created. To name but one example, this functionality is used in the

Aggregation sample node.

To generate ports dynamically, a list of inputs or outputs is defined as a property of the node

class. The syntax is very similar to the definition of a single input or output.

[Input]
public List<DoubleValueObject> Inputs { get; private set; }

This list must be initialised in the node class constructor.

this.Inputs = new List<DoubleValueObject>();

Two help functions are provided to fill the list with the corresponding port’s instances. These

are located in the LogicModule.Nodes.Helpers namespace within the ListHelpers class.

18

void UpdateListLength<T>(

IList<T> list, int newCount, Func<int, IValueObject> creator,
EventHandler<ValueChangedEventArgs> handler = null)

where T : IValueObject;

void ConnectListToCounter<T>(

IList<T> list, ValueObject<int> countParameter, Func<int, IValueObject> creator,
EventHandler<ValueChangedEventArgs> handler, Action listLengthChangedCallback =
null)

where T : IValueObject;

The UpdateListLength function fills the list of inputs or outputs with a fixed number of instances.

The first parameter must be the list itself. The second parameter indicates the required list

length. To fill the list, the function needs a rule to generate new IValueObject instances; this is

the third parameter, creator. How this rule is defined is described below. There is also an

optional fourth parameter: the event handler, handler. This is assigned to the ValueSet event

(see below under ValueSet), which is called up when the list length is changed, is added to the

newly created ports or is removed from the deleted ones. This has the effect that the method

represented by handler is called up as soon as one of the values of the ports in the list changes.

A common application is for the GPA user to manually specify the required number of ports.

This is also the case with the Aggregation sample node. A parameter, Port, is available to the

user so they can enter the desired number of ports. With the ConnectListToCounter method,

the value of the parameter is automatically linked to the list length. The first parameter of this

function is the dynamic list of ports; the second is the parameter Port, whose value specifies

the list length. Note that the port type of this parameter must be Integer. The smallest

permissible value for the list length is ‘0’, so the values that the parameter can adopt must be

limited to positive values by the properties MinValue and MaxValue. The third and fourth

parameters of the function are analogous to those of UpdateListLength. The fifth parameter is

an optional callback function that is called up each time the port list length is changed.

The creator parameter can be generated using the ITypeService object.

Func<int, IValueObject> creator =
this.typeService.GetValueObjectCreator(PortTypes.Number, InputPrefix);

The first parameter of GetValueObjectCreator is the port type of the ports generated with

creator, and the second is a string that is used as the name prefix for the ports to be generated.

For example: The developer chooses ‘Input’ for InputPrefix and transfers the creator variable

thus created to the UpdateListLength or ConnectListToCounter function. These methods thus

generate ports with the names ‘Input 1’, ‘Input 2’, ‘Input 3’, etc. Note that the numbering of the

names starts with ‘1’, but the list index of the first port is ‘0’.

5.3.2 ISchedulerService
The ISchedulerService interface provides methods to execute actions at a specific time. The

current system time can also be queried. The interface provides an abstraction layer at the real

system time. This abstraction makes it possible to simulate a different time, e.g. when

19

simulating a logic page in the GPA. Direct access to the system time via the .NET Framework

is to be avoided in the node.

The ISchedulerService interface provides the following methods and properties.

SchedulerToken InvokeIn(TimeSpan delay, Action action);

SchedulerToken InvokeAt(DateTime dueTime, Action action);

bool Remove(SchedulerToken schedulerToken);

DateTime Now;

The InvokeIn method is used to set an action that is executed after the delay time. Similarly,

the action transferred to the InvokeAt method is executed at the dueTime fixed time according

to UTC. Both functions return a token of the SchedulerToken type. If necessary, this token can

be stored in a variable that can be transferred to the ‘Remove’ method to remove the

corresponding action from the queue of actions. The SchedulerToken type is a nullable type.

The abstracted local system time can be queried with Now. Note: The Now method returns the

local time, whereby InvokeAt expects a time specification according to UTC.

The following example shows how these methods interact.

public class Enterprise : LogicNodeBase
{
 ...
 private ISchedulerService schedulerService;
 private SchedulerToken abortToken;
 ...
 public Enterprise(INodeContext context)
 : base(context)
 {
 ...
 this.schedulerService = context.GetService<ISchedulerService>();
 TimeSpan countdown = new TimeSpan(0, 0, 10, 0); //10min
 this.abortToken = this.schedulerService.InvokeIn(countdown, this.SelfDestruction);
 //Do not lose this token or let the Klingons find it
 ...
 }
 ...
 private void SelfDestruction()
 {
 ... //Explosion
 }
 private void Abort()
 {
 if (abortToken != null)
 {
 this.schedulerService.Remove(this.abortToken);
 this.abortToken = null;
 }
 }
 ...
}

20

5.3.3 IPersistenceService
With this interface, the node stores values over the device’s runtime. The following methods

are available.

void SetValue(ILogicNode node, string key, string value);

string GetValue(ILogicNode node, string key);

void DeleteValue(ILogicNode node, string key);

All three methods require the instance of the calling logic node as the first parameter, so this

must be transferred. The second parameter is the key used to access the value. The SetValue

method stores or overwrites the value of the node and the key. The GetValue method calls the

value stored by SetValue back up and outputs it as a return parameter. If no value is stored

for key, GetValue returnsnull. The value is deleted again with the DeleteValue method. Values

can only be stored and called up as strings.

The stored values can also be called up with GetValue even after the device on which the logic

node is used has been restarted. A stored value is still available even if the GPA project in

which the same logic node (with the same ID) is used is relaunched. The ID of the logic node

is generated automatically as soon as the node is added to the logic page. A value can be

uniquely assigned to a node and a key by means of the node ID. This prevents one node from

accessing the values of another one. This also means that values stored via the

IPersistenceService interface are lost as soon as the node is removed from the logic page.

The stored values are deleted or no longer available if

• The logic node is removed from the logic page.

• The Gira device is assigned to another project or the assignment is removed.

• Start-up is carried out with the ‘Delete application data’ flag set.

• The Gira device is reset to factory settings.

The SetValue and GetValue methods throw a CommunicationException if access to the values

fails or takes too long.

5.3.4 IEditorService
The methods of this interface influence the logic page’s editability and should be used with

great care. Use of this interface only makes sense in the constructor and the event handlers

that may be registered there, because it only affects the port types displayed in the GPA and

thus only the operation during the creation of the logic page. There are a number of nodes in

which a value is passed through without further evaluation under certain conditions. The Send-

By-Change node is an example of this. For this node, no restriction may be made with regard

to the port types, so the corresponding inputs and outputs use the ‘ANY’ port type. If the user

has linked one of the ports to a port of another node, it is clear that both the input and the

output of the Send-By-Change node must adopt the port type of this external port. The

IEditorService offers the following methods for mapping such scenarios.

ISharedTypeToken RegisterSharedType(ILogicNode node, params IValueObject[] ports);

void ClearAllSharedTypeRegistration(ILogicNode node);

The RegisterSharedType method merges a group of ports that are transferred to the function

listed into one group. If one of the ports in the group is connected to another port of a more

21

specific port type when the logic page is created (in the image of the type model, this means

that a type that is arranged further ‘right’ than the actual port type is linked), all other ports in

the group also adopt this type. The first parameter to be transferred to the method is the this

reference to the calling node. The return parameter is a token that is used to dissolve the group

again at a later time. The ISharedTypeToken type provides the Unregister method for this

purpose.

void Unregister();

Once this method has been called up, transfer of the port type between the group’s ports is

cancelled again. The ClearAllSharedTypeRegistration method dissolves all created groups of

ports again.

The example of the Send-By-Change node is particularly simple. In the constructor, only one

line is called up to link the input’s and the output’s port types.

context.GetService<IEditorService>().RegisterSharedType(

this, this.Input, this.Output);

5.4 Functionality of the Programming node
This section describes how the functionality of the node is implemented. The ILogicNode base
class, from which each node class inherits directly or indirectly, provides two methods that
must be implemented by the node class. The following code should be considered as an
example.
public class Node : ILogicNode

{

 public Node(INodeContext context)

 {

 ...

 }

 public override void Startup()

 {

 ... //This code is executed once when the logic engine starts up

 }

 public override void Execute()

 {

 ... //This code is executed every time a value is written to an input,

 //and all inputs have a value

 }

 ...

}

The Startup method is executed only once when the node is started. This method is very useful

for testing whether the node’s inputs or parameters have been assigned values during

configuration and for reading these values. The LogicNodeBase class implements an empty

Startup method. The Execute method is key for the node to work. It is called up each time a

value (not necessarily a new value) is written to an input by linking to another node and all

inputs have a valid value (not null). In the method, the values are called up and processed and,

22

if necessary, the outputs are updated. The LogicNodeBase class implements an empty

Execute method here too.

5.4.1 Properties of IValueObject

WasSet
WasSet is a flag and can only be used meaningfully in the Execute method. This property is

set to true when the value of the corresponding input is set. This allows the user to determine

which input triggers calling-up of the Execute method. At this point, the user can react in

different ways to the value changes at the various inputs. This is useful, for example, if the

node has two inputs: a reset input that resets the node in a defined form when a value is

received, and an input that triggers the node’s actual function. Once the Execute method has

been executed, the WasSet values of all inputs are automatically reset to false.

HasValue
HasValue is also a flag. This property can be used to query whether the value of this port is

valid, i.e. not null. This can be the case for ports without an initial value or if the initial value

has been removed by the user. It is therefore necessary to check for all inputs and outputs

whether a value is available before calling up the value.

Value
This property is vitally important for the IValueObject instance. It contains the actual value. The

data type is specified by the port type; for BoolValueObject, Value is always of the bool type,

for UIntValueObject, Value is always of the uint type, and so on. For an IValueObject instance

that is not specified in more detail and for AnyValueObject instances, the Value type is object.

Value is both writeable and readable.

ValueEquals
The ValueEquals method is used to check whether the value stored in the IValueObject

instance matches the transferred value. This is a short notation for value comparisons.

ValueEquals checks internally whether the value is set at the IValueObject before the value

comparison with HasValue. For the actual value comparison, ValueEquals uses the

Object.Equals method or its overloads from the .NET Framework.

BlockGraph
This property is only useful for outputs and may only be used for them. BlockGraph sets the

value of the output to null and blocks the execution of all downstream logic nodes. This is

useful, for example, if the node is performing an asynchronous operation and is waiting for a

return value from this operation. Execution of the downstream logic nodes is stopped during

the wait period. Only when another value is written to the output for which BlockGraph was

called up is the execution of the downstream logic continued with the newly written value.

NOTE: The simulation of a logic page in the GPA does not reproduce the behaviour of

BlockGraph correctly.

23

ValueSet
This property is an event handler and available for all ports. A change in a port’s value triggers

an event that calls up all functions registered under ValueSet. The ‘+=’ operator is used to

register another function for this event.

this.Direction.ValueSet += this.DirectionOnValueSet;

This example is taken from the program code of the ColorConverter sample node. Here, the

DirectionOnValueSet function is added to the ValueSet event for the Direction parameter. Each

time the parameter’s value is set, the DirectionOnValueSet function is automatically called up.

The ValueSet property is particularly useful if, as for the ColorConverter node, inputs and

outputs are to be generated dynamically.

5.5 Checking the logic nodes
The ILogicNode interface class also contains the Validate method, which must also be

overwritten in the node class. The Validate method is not intended to be called up by the node;

rather, it is only called up by the GPA. It is used to inform the GPA whether the node has been

meaningfully initialised. The validation of the logic nodes can be called up in the GPA at various

points, e.g. by the user starting the simulation of a logic page. Each time the simulation of the

logic page is started, the GPA calls up all nodes’ Validate methods. If a logic node reports an

error, starting of the simulation is aborted and an error message is displayed in the GPA. The

logic pages are also validated when the user begins the project start-up or manually triggers

testing of the project. For these two cases, details in the information window show the user

which logic node the validation failed for and which error message the node generates. This

functionality is used, for example, in the Threshold with Hysteresis logic node to ensure that

the lower threshold is lower than the upper one.

public override ValidationResult Validate(string language)
{
 if ((this.LowerThreshold.HasValue && this.UpperThreshold.HasValue) &&
 this.LowerThreshold.Value > this.UpperThreshold.Value)
 {
 return new ValidationResult { HasError = true, Message =
 this.Localize(language,"HysteresisValidationErrorMessage") };
 }
 return base.Validate(language);
}

The method has a ValidationResult object as return parameter. ValidationResult has the

properties HasError (a flag indicating whether there is a validation error; false means there is

no error) and Message, which is of the string type. If the HasError flag is true, Message is

displayed to the user in the information window. The language transfer parameter is a language

code that the GPA uses to query the Message error message in a particular language for the

method (details on translations are provided in section 5.6). The implementation of this method

in LogicNodeBase returns the fixed HasError=false and an empty Message. The validation is

therefore always successful for this class.

24

5.6 Translation of the logic nodes
The logic nodes can be made available to the user in different languages. The Localize method

of the ILogicNode interface class must be implemented in the node class for this purpose. This

method is called up by the GPA to translate any port name present in the node.

string Localize(string language, string key);

The structure is very simple: key is the string to be translated and language is the code of the

language that the content of key is to be translated into. The Localize return value is the

translated result that is displayed by the GPA as the port name. The Localize method is also

used inside the node in the example from section 5.5 to translate the Message error message,

for example. The GPA transfers the language code of the language set in the GPA to the

Localize method. The following languages are available in the GPA.

Language codes according to ISO 639-1 Language

de German

en English

es Spanish

nl Dutch

ru Russian

zh Chinese

(it) (Italian)

Italian is not available yet (GPA v3.1), but will be available in later versions.

The fact that the LogicNodeBase class implements the Localize method is very convenient.

The following section describes how to use the Localize method implementation in the

LogicNodeBase and LocalizablePrefixLogicNodeBase classes.

The LogicNodeBase Localize method uses the ResourceManager from the System.Resources

namespace. This class is documented in the .NET Framework. .resx files are used as

translation tables. .resx files can be conveniently created and edited with Visual Studio. The

files must exist in the same directory as the Visual Studio project file. A .resx file must be

created for each language, as must a default .resx file if necessary. If there is only one

resources file (including multiple languages), this file will be used for translation. If multiple files

are found, the Resources.<Language Code>.resx file is preferably used, otherwise a random

one is used. <Language Code> corresponds to the language code of the language provided

by this translation file. The file name of the default .resx file does not contain a language code,

i.e. <name>.resx.

Visual Studio displays the .resx files in the editor as a table. The strings to be translated are

entered in the first column (Name); the corresponding translation is entered in the second

column (Value). In case the language requested with the language parameter does not have

a translation file or the corresponding key has not been translated, the Localize method uses

the default .resx file. It is advisable to create a default translation file such as this, because it

will make the port names displayed more user-friendly. In the source code, the developer may

under certain circumstances enter abbreviations for the port names or avoid spaces and

special characters. The port names are subsequently adapted with the default translation. If

neither a language-specific nor a default translation was found, this Localize method returns

the key input value.

25

The translation is slightly more complex if the Ports in the Form of a List node is defined.

Especially for this case, the LocalizablePrefixLogicNodeBase class is available in the

LogicModule.Nodes.Helpers namespace. This class inherits from LogicNodeBase and only

overwrites the Localize method. It may be useful for the developer to have the node class

inherited from LocalizablePrefixLogicNodeBase. The constructor of this class requires two

transfer parameters.

public LocalizablePrefixLogicNodeBase(INodeContext context, string inputPrefix)

The context parameter must be transferred from the node class to this base class; inputPrefix

is the prefix of the port names from the port list as also transferred to the

GetValueObjectCreator method. The Localize method handles strings (key) starting with the

prefix separately and replaces only the prefix with the translation of this prefix given in the .resx

file. The Localize method also inserts a space between the prefix and the rest of the string if

the translation of the prefix does not end with a space. All other strings (key) that do not begin

with the inputPrefix prefix are treated in the same way as the Localize method of the

LogicNodeBase base class. The developer must ensure that the port names and the prefix are

selected so that no other port name unintentionally begins with the prefix.

It is also possible for a node to contain more than one port list, e.g. one for inputs and one for

outputs. These port lists have different prefixes. In this case, the SDK does not provide a pre-

implemented Localize method, so the developer must implement it themselves.

6 The Manifest.json file
Each logic node library needs a Manifest.json file in which the metadata of the containing logic

nodes is defined. This file must exist in the same folder as the sources of the logic nodes

themselves. The SDK logic node contains two Manifest.json files: one for the ExampleNodes

project and one for the LogicNodes project. The respective Visual Studio projects already

contain these Manifest.json files, so they can be easily edited from within Visual Studio.

6.1 Adjusting the coding
The Manifest.json file must be saved with the UTF-8-BOM coding so that special characters

such as umlauts are correctly displayed in the names and descriptions of the logic nodes in

the GPA.

In Visual Studio, the coding can be adjusted at:

File -> Save <File Name> As.... In the File Save dialogue, the Save with Encoding... item must

be selected in the drop-down menu next to Save. In the Advanced Save Options window that

opens, the Unicode (UTF-8 with signature) – Codepage 650001 option must be selected under

Encoding.

26

6.2 Sample Manifest.json file
{
 "PackageFormatVersion": "1.0",
 "Assembly": "LogicNodesSDK.Logic.Examples.dll",
 "PackageName": {
 "en": "Example logic nodes",
 "de": "Beispiellogikbausteine"
 },
 "DependentFiles": [
 "LogicModule.Nodes.Helpers.dll"
],
 "Version": "1.0.0",
 "Author": "Gira Giersiepen GmbH & Co. KG",
 "Copyright": "Gira Giersiepen GmbH & Co. KG (copyright)",
 "DeveloperId": "LogicNodesSDK",
 "License": "Free",
 "PackageId": "183FBF6C-AE53-4393-A2A5-2CBE0F1696AF",
 "Nodes": [
 {
 "Type": "LogicNodesSDK.Logic.Examples.BasicNode",
 "Name": {
 "en": "Examples: Basic logic node",
 "de": "Beispiele: Einfacher Logikbaustein"
 },
 "IsConverter": false,
 "Category": "Node",
 "DefaultIcon": "icons/GenericLogicNode.png",
 "HelpTooltip": {
 "en": "Basic logic node that sets the output to the same value as the input.",
 "de": "Einfacher Logikbaustein, der den Ausgang auf den gleichen Wert wie den
Eingang setzt."
 },
 "HelpFileReference": null
 },
 {
 "Type": "LogicNodesSDK.Logic.Examples.Aggregation",
 "Name": {
 "en": "Examples: Aggregation",
 "de": "Beispiele: Aggregation"
 },
 "IsConverter": false,
 "Category": "Node",
 "DefaultIcon": "icons/GenericLogicNode.png",
 "HelpTooltip": {
 "en": "Calls aggregate functions for multiple inputs: minimum, maximum, sum,
average.",
 "de": "Ruft Aggregatfunktionen für mehrere Eingänge auf: Minimum, Maximum,
Summe, Durchschnitt."
 },
 "HelpFileReference": null
 }
]
}

27

6.3 Description of the entries in the Manifest.json file
Key Sample value Application

PackageFormatVersion ‘1.0’ The version of the
Manifest.json format. Always
‘1.0’.

Assembly ‘LogicNodesSDK.Logic.Examples.dll’ File name of the logic node
library or the name of the DLL.

PackageName {
 "en": "Example logic
 nodes",
 "de": "Beispiellogik-
 bausteine"
}

A JSON object whose keys
are country codes and whose
values are the name of the
node library in the respective
language.

DependentFiles [‘LogicModule.Nodes.Helpers.dll’] JSON array with file names of
the required DLLs.

Version ‘1.0.0’ Version of the logic node.
Only the highest version of a
logic node is available in the
GPA. Displayed in the GPA in
the logic node’s properties
under Version.

Author ‘Gira Giersiepen GmbH & Co. KG’ The developer of the logic
node.

Copyright ‘’ Field is not evaluated.

DeveloperId ‘LogicNodesSDK’ The developer’s ID.
The ID is assigned with the
certificate.

License ‘Free’ The library’s licence model.
Possible values are: ‘Free’ or
‘Device’.

PackageId ‘183FBF6C-AE53-4393-A2A5-
2CBE0F1696AF’

The library’s GUID. Here, you
have to generate your own. In
Visual Studio under Tools -
> Create GUID.

Nodes [<See extra table>] JSON array with one object
per logic node. The specific
structure is described in the
table below.

28

Structure of objects in the nodes array

Key Sample value Application

Type ‘LogicNodesSDK.Logic.
Examples.ColorConverter’

The node’s class name,
including the namespaces.

Name {
 "en": "Color converter",
 "de": "Farben-Konverter"
}

A JSON object whose keys
are country codes and whose
values are the name of the
node in the respective
language.

IsConverter false Indicates whether the node
can be connected directly
downstream of the output
when an output is right-
clicked.

Category ‘Node’ Node should always be
entered for this version of the
SDK logic node.

DefaultIcon ‘icons/GenericLogicNode.png’ Relative path to the logic
node’s icon.

HelpTooltip {
 "en": "Converts colors between
1x 3 byte and 3x 1 byte.",
 "de": "Wandelt Farbwerte
zwischen 1x 3 Byte und 3x 1 Byte
um."
}

A JSON object whose keys
are country codes and whose
values are a
short description of how the
logic node works in the
respective language.

HelpFileReference ‘BasicArithmetic’ Help file that opens in the
GPA when you click on ‘More
Information’. The value is
treated differently depending
on where the entered value
begins. Details are given in
section 6.4.

6.4 Licence model
The License entry, which indicates the licence the node package should be available under,

exists in the Manifest.json file. The table already shows that there are two possible values for

this entry.

6.4.1 Free
With the ‘Free’ licence model, nodes from the package can be used on any device as often

as required. No additional licence file is required on the device. Additionally, ‘Free’ is the

default value that will be used if the License entry in the Manifest.json file is not present.

6.4.2 Device
The other alternative is the ‘Device’ licence model. Logic node packages can be distributed

via the Gira AppShop for a fee. To use these nodes, a licence file that binds the node

package to a fixed device via the MAC address is also assigned. This licence file can either

be imported manually into the GPA or downloaded automatically from the device when the

internet connection is active.

29

Licence files with limited validity can be issued to customers, so a package logic node is no

longer executable on the device after this validity has expired. Trial versions of a logic node

package that cease to be valid after 30 days, for example, can be distributed in this way.

In the Gira Smart Home App, a user is notified 30 days in advance if a licence will expire in

the near future.

6.5 Description of the HelpFileReference in the Manifest.json file
The GPA can display a help page in the browser for each logic node using the default browser

set in the user’s system. The help page is called up when ‘…More information’ is clicked on in

the node’s information window. The HelpFileReference entry in the Manifest.json file specifies

how the GPA locates and calls up the help page.

The <Value> placeholder here always stands for the value of the HelpFileReference entry in

the Manifest.json file. <Value> always starts with a control character that specifies how the

help page is found by the GPA.

Control character ‘!’
The control character ‘!’ instructs the GPA to call up an external URL. The complete URL,

including the protocol name, must follow directly after the ‘!’ for this purpose.

"HelpFileReference": "!https://gira.de/",

This way of providing a help page is very easy to implement and allows the developer to

customise the help page even without the node being supplied in a new version. However, the

user needs an active internet connection.

Control character ‘$’
The node can also provide a .html file that is displayed in the browser. <Value> must start with

the control character ‘$’, followed by the file name, for this purpose.

"HelpFileReference": "$help.html",

The help.html file must be present in the $(TargetDir) target directory before Visual Studio

builds the node. The LogicNodeTool.exe program, which is called up in the post-build event,

generates the node’s .zip file, including the help.html file.

Control character ‘@’
For some nodes, it makes sense for the help page to be displayed in the language set in the

GPA. To implement this, <Value> must start with the control character ‘@’. As before, the

corresponding .html file must already exist in the target directory before construction.

The exact path is $(TargetDir)\Help\<Language Code>\<Assembly>.html. This path structure

is retained if the LogicNodeTool.exe program generates the node’s .zip file. <Language Code>

is one of the language codes from the table, whereby the GPA uses the language set internally.

<Assembly> is the full file name of the logic node library, as specified in the Manifest.json file

after the Assembly key (without the .dllextension). After the control character ‘@’, <Value>

specifies the ID of a jump label in the .html file.

"HelpFileReference": "@node",

When the help page is called up, the GPA opens the corresponding <Assembly>.html and

30

jumps to the node jump label. It is therefore possible to place several logic nodes in one help

file and navigate to the correct position with the jump label.

7 Hints and tips
Before a logic node is published, the risk of errors must be minimised; of course, they can

never be excluded entirely. The following items are a list of errors and problems that often

occur.

Debugging / testing logic nodes
To test the functionality of the created logic nodes, it is advisable to use the prepared NUnit

Test project by writing sufficient test cases there to ensure the node’s functionality.

It is also possible to debug in the simulation of the GPA. In Visual Studio, you can use the

Attach to Process feature to do this. Visual Studio must attach to the GPA process. If, in the

GPA’s logic node simulation, a breakpoint is hit by its node, Visual Studio stops the GPA

process, then debugging can take place.

Versioning
The logic nodes are added to the GPA using the Add Logic Nodes button. However, the node

is only adopted by the GPA if the added version of the node does not already exist in the GPA.

In other words, every time the node’s source code is changed, the version number in the

Manifest.json file must be increased before the node is built, otherwise the node cannot be

added to the GPA. The new version number must be entered manually in the Manifest.json file

under the Version key.

The latest version of the node is only used for nodes that are newly added to a logic page. If

an older version of the logic node already exists on the logic page, it retains its older version.

The Update Logic Nodes button updates the version of the nodes that are already used on a

logic page to the latest available version. In any case, a situation where there are several

versions of the same node in one logic page must be avoided. If a logic page such as this is

loaded to a Gira device, this leads to the logic behaving unexpectedly.

Before a node is published, it must therefore be checked whether the version number is

incremented correctly.

Translation and help
When translating the logic nodes, it is advisable to use the existing Localize methods from the

LogicNodeBase or LocalizablePrefixLogicNodeBase classes if possible. It is also advisable to

generate a default .resx file to display meaningful port names in the GPA for the user. If a port

list is used, care must be taken to ensure that the name prefix is not used at the same time at

the start of another port name to avoid incorrect translations. Additionally, the port names

assigned to the ports during instantiation must be unique within the node.

The developer must bear a few things in mind when creating language-specific help files. There

is no default help file to use if the language set in the GPA is not available. A help file should

therefore be created for each language available in the GPA, even if it is not written in the

corresponding language. A help file in another language is more useful for the user than no

help file at all.

31

Frequent misuse

Accessing non-existent values:
Before accessing a port’s value, HasValue must be used to check whether this value exists.

Many operations called up with null values cause the logic to crash. It also needs to be checked

whether the value exists if the port has been assigned an initial value in the constructor, since

the GPA user can delete the port’s initial value.

Exiting the value range for list lengths:
A node often needs to use a parameter for the GPA user to set the number of inputs or outputs.

The ConnectListToCounter help function expects a parameter of the ‘INTEGER’ port type. It is

therefore absolutely essential that the parameter’s permissible values with the MinValue and

MaxValue properties are limited to positive values that are not ‘too big’. Otherwise, the user

can enter a value that causes crashing.

Different time zones for ISchedulerService:
Actions that are executed at a fixed time can be set with the InvokeAt method of the

ISchedulerService interface. The time must be entered according to the UTC time standard. If

the fixed time is calculated from a time span and the current time, it is important to note that

the Now method returns the local time and not the time according to UTC.

.NET version
It is absolutely essential that the ‘.NET Framework 4.5’ or ‘.NET Framework 4.0’ target

framework is selected in the project settings for the logic node. Otherwise, the logic node on

the device cannot be executed correctly. This is already set in all projects delivered with the

system.

Supported libraries on the devices
The LogicEngine on the Gira X1 / Gira L1 runs mono under Linux.

For the Gira X1, this is mono 4.0.2, and for the Gira L1, mono 3.0.1. Both versions do not

have all libraries from the .NET Framework available.

List of available mono libraries:

- Mono.Security

- System

- System.Configuration

- System.Core

- System.Data
- System.Drawing (*)

- System.Numerics

- System.Runtime.Remoting (*)

- System.Runtime.Serialization

- System.Security

32

- System.ServiceModel

- System.ServiceModel.Web

- System.Transactions

- System.Web

- System.Xml

- System.Xml.Linq

(*) = not available on the L1

If the developer would like to use other external libraries, they must be copied to the device

together with the node in the zip file.

